Economic Effects of Standards Harmonization between Technologically Asymmetric Countries

Han Eol Ryu

Korea Institute for Industrial Economics and Trade

Very Preliminary Draft

Motivation

- Since the fostering of trade liberalization in the 1990s, tariff rates have been dropping steadily
 - While the varieties and volume of Non-tariff measures (NTMs) have increased
- Under the GATT regime, member countries are unable to impose higher tariff rates than the bound rates
 - NTMs has been practiced as trade barriers in many countries

Motivation

- Standards, which is one of the NTMs, may also serve as de facto trade barriers
 - The U.S. Federal Motor Vehicle Safety Standards (FMVSS) VS. The United Nations Economic Commission for Europe (UNECE)
 - lithium-iron phosphate (LFP) battery VS. nichel-manganese-cobalt (NMC) battery
- It discriminates foreign producers by incurring conversion costs to satisfy domestic standards
- Moreover, in some industries, technology level may affect such conversion costs

Motivation

- WTO Agreement on Technological Barriers to Trade (the TBT Agreement)
 - ensure that the standards do not create unnecessary obstacles
 - However, due to the characteristics of multilateral agreement, it is not easy to satisfy all the member countries needs
- The TBT chapter in Free Trade Agreements (FTA TBT agreement) or Standards Union
 - set out specific trade obligations and measures reflecting the characteristics of each member country.
 - can participate in the member countries' process of developing standardsrelated measures.
- Examines the economic effect of standards harmonization and government's strategic standardization policy

Literature Review

- Standards can work as barriers to trade
 - Minimum quality standards(e.g. Boom, 1995; Lutz, 1996)
 - Compatibility standards

(e.g. Jensne and Thursby, 1991; Gandal and Shy, 2001; Chen et al., 2006)

• Examines the impact of standards harmonization under the existence of technology asymmetries among countries

- There are three countries—L, M, and H, and Each country has its representative firm I, m, and h, respectively.
- Firms produce horizontally differentiated products and sell them to all three countries.
- The markets are segmented, and thus the firms can charge different prices in different countries.

• Consumer's utility function

 $U_x = V_i - p_i - [d_i(x)]^2$ where, $V_i = V$ and $[d_i(x)]^2 = x^2$

- Production costs are the same for all firms and set to be zero
- Each of three countries has adopted different standards
 - the domestic firms produces products according to the domestic standards
 - It thus incurs standard conversion costs for the foreign firms in order to satisfy local standards

- Technology differences among the three nations
 - Technology gap is reflected in the marginal conversion $costs(c_h < c_m < c_l)$

$$- c_h = c - \gamma, \ c_m = c \text{ and } c_l = c + \gamma$$

• the production costs are the same for all firms, and set to zero.

- The inverse demand function that each firm faces in country m's market $x_{i,j}^n + 1 - x_{k,i}^n = 1 + \frac{p_j^n + p_k^n - 2p_i^n}{2}$, where, $i, j, k \in \{l, m, h\}$, $i \neq j \neq k$
- the profit function of firm i in country n

$$\pi_i^n = (p_i^n - c_i^n) \left(x_{i,j}^n + 1 - x_{k,i}^n \right) = (p_i^n - c_i^n) \left(1 + \frac{p_j^n + p_k^n - 2p_i^n}{2} \right)$$

• The Nash equilibrium price, outputs and profits of firm i in country n can be obtained

- where,
$$c_{l}^{L} = c_{m}^{M} = c_{h}^{H} = 0$$

• the profit functions of the three countries' firms are expressed as follows:

$$\pi_{l} = \pi_{l}^{L} + \pi_{l}^{M} + \pi_{l}^{H} = \frac{14}{25}\gamma^{2} + \frac{6}{25}\gamma c - \frac{12}{5}\gamma + \frac{6}{25}c^{2} + 3,$$

$$\pi_{m} = \pi_{m}^{L} + \pi_{m}^{M} + \pi_{m}^{H} = \frac{2}{25}\gamma^{2} + \frac{6}{25}c^{2} + 3,$$

$$\pi_{h} = \pi_{h}^{L} + \pi_{h}^{M} + \pi_{h}^{H} = \frac{14}{25}\gamma^{2} - \frac{6}{25}\gamma c + \frac{12}{5}\gamma + \frac{6}{25}c^{2} + 3$$

 the social welfare of each country can be summarized as follows:

$$\begin{split} W^{L} &= \frac{16}{25} \gamma^{2} + \frac{4}{25} \gamma c - \frac{7}{5} \gamma + \frac{8}{25} c^{2} - 2c + 3V - \frac{1}{4}, \\ W^{M} &= \frac{8}{25} \gamma^{2} + \frac{8}{25} c^{2} - 2c + 3V - \frac{1}{4}, \\ W^{H} &= \frac{16}{25} \gamma^{2} - \frac{4}{25} \gamma c + \frac{7}{5} \gamma + \frac{8}{25} c^{2} - 2c + 3V - \frac{1}{4}. \end{split}$$

Standards Harmonization

- Two countries harmonize standards by forming FTA TBT agreement or standards union
 - both member countries set common standards
 - The conversion costs are eliminated between member countries
 - Focus on the technologically middling country m
- M harmonizes standards with H
- M harmonizes standards with L

Standards Harmonization with H

	Before the harmonization	After the harmonization	Welfare effects of standards harmonization
Consumer surplus of M	$\frac{6}{25}\gamma^2 + \frac{2}{25}c^2 -2c + 3V - \frac{13}{4}$	$\frac{2}{25}\gamma^{2} + \frac{4}{25}\gamma c - \gamma + \frac{2}{25}c^{2} - c + 3V - \frac{13}{4}$	$\frac{\Delta CS^M > 0}{\frac{\partial \Delta CS^M}{\partial \gamma} < 0}$
Producer surplus of M	Total PS: $\frac{2}{25}\gamma^2 + \frac{6}{25}c^2 + 3$	Total PS: $\frac{3}{25}\gamma^{2} + \frac{3}{25}c^{2} + \frac{6}{25}\gamma c$ $+ \frac{2}{5}\gamma + \frac{2}{5}c + 3$	$\frac{\Delta P S_m > 0}{\frac{\partial \Delta P S_m}{\partial \gamma} > 0}$
	PS in the domestic market: $\frac{1}{25}(2c+5)^2$	PS in the domestic market: $\frac{1}{25}(\gamma + c + 5)^2$	$\Delta PS_m^M < 0$

Standards Harmonization with H

Malfara affacta af

	Before the harmonization	After the harmonization	standards harmonization
Producer surplus of M	PS in the member market, H: $\frac{1}{25}(\gamma - c + 5)^2$	PS in the member market, H: $\frac{1}{25}(\gamma + c + 5)^2$	$\Delta PS_m^M > 0$
	PS in the non-member market, L: $\frac{1}{25}(\gamma + c - 5)^2$	PS in the non-member market, L: $\frac{1}{25}(\gamma + c - 5)^2$	0
The social welfare of M	$\frac{8}{25}\gamma^2 + \frac{8}{25}c^2 -2c + 3V - \frac{1}{4}$	$\frac{1}{5}\gamma^{2} + \frac{2}{5}\gamma c - \frac{3}{5}\gamma + \frac{1}{5}c^{2} - \frac{3}{5}c + 3V - \frac{1}{4}$	$\frac{\Delta W^M > 0}{\frac{\partial \Delta W^M}{\partial \gamma}} \gtrless 0$

Standards Harmonization with H

- When the average conversion cost of the three firms is sufficiently large, the higher technological difference might improve the social welfare of M.
- When not, an increase of the technology gap might lower the social welfare of M.

$$\frac{\partial \Delta W^M}{\partial \gamma} = \frac{2}{5}c - \frac{6}{25}\gamma - \frac{3}{5} \gtrless 0, \text{ according to } c \gtrless \frac{3}{5}\gamma + \frac{3}{2}$$

FTA TBT with H

The Optimal Strategy for M

• M may have to set priorities between H and L

$$\Delta CS_{HAR_{MH}}^{M} - \Delta CS_{HAR_{ML}}^{M} = \frac{2\gamma(4c-25)}{25} < 0,$$

$$\Delta PS_{HAR_{MH}}^{M} - \Delta PS_{HAR_{ML}}^{M} = \frac{4\gamma(3c+5)}{25} > 0,$$

$$\Delta W_{HAR_{MH}}^{M} - \Delta W_{HAR_{ML}}^{M} = \frac{2\gamma(2c-3)}{5} \gtrless 0$$

- If the average conversion cost is sufficiently large (i.e., c>3/2), prioritize the harmonization with H
- If the average conversion cost is sufficiently small (i.e., c<3/2), prioritize the harmonization with L

Incomplete Information

- To reach an agreement between countries with different disagreement payoffs, side payment is required
- The actual technology level of H is not known to M
 - M should set up an optimal side payment strategy considering each technology level report of the country H

Incomplete Information

• If the technology difference between two countries is large enough $(\frac{1}{5} < \gamma)$, then H has less welfare gains than M as the technology gap increases

$$\frac{\partial}{\partial \gamma} \left(\Delta W_{HAR_{MH}}^{H} - \Delta W_{HAR_{MH}}^{M} \right) = \frac{5 - 2c - 10\gamma}{25}$$

• H has an incentive to disclose the actual technology difference especially when it is small

Conclusions

- Technologically middling country needs to actively harmonize its standards with other country
- Technologically middling country needs to decide its harmonization partners strategically
 - Depending on the characteristics of firm or industry

Thank you